Worksheet for 2020-04-17

Conceptual Review

Question 1. Is there a vector field \mathbf{F} on \mathbb{R}^{3} such that $\nabla \times \mathbf{F}=\langle x, 0,0\rangle$?

Problems

Problem 1. Let D be the sphere $x^{2}+y^{2}+z^{2}=9$, oriented positively (outwards).
(a) Without parametrizing, compute the unit normal \mathbf{n} for D in terms of x, y, z. Hint: You did this a lot in Chapter 14.
(b) Compute the flux of the vector field $\mathbf{F}=\langle x, y, z\rangle$ through D. Hint: The surface area of a sphere of radius R is $4 \pi R^{2}$.

Problem 2. The curve $\langle 2+\cos u, \sin u\rangle, 0 \leq u \leq 2 \pi$ in the $x y$-plane is rotated around the y-axis. Parametrize the resulting surface, and describe it.
Problem 3. Compute the flux of the vector field $\left\langle 0,0,4-z^{2}\right\rangle$ outwards through the closed cylinder with lateral side $x^{2}+y^{2}=10$ and lids $z=0$ and $z=2$. Note that this surface has three parts.
Problem 4. Compute the divergence of the vector field in Problem 1. Integrate it over the 3d interior of the sphere: $x^{2}+y^{2}+z^{2} \leq$ 9. What do you get?

Compute the divergence of the vector field in Problem 3. Integrate it over the 3d interior of the cylinder. What do you get?

