Worksheet for 2020-04-17

Conceptual Review

Question 1. Is there a vector field **F** on \mathbb{R}^3 such that $\nabla \times \mathbf{F} = \langle x, 0, 0 \rangle$?

Problems

Problem 1. Let *D* be the sphere $x^2 + y^2 + z^2 = 9$, oriented positively (outwards).

- (a) Without parametrizing, compute the unit normal **n** for *D* in terms of *x*, *y*, *z*. Hint: You did this a lot in Chapter 14.
- (b) Compute the flux of the vector field $\mathbf{F} = \langle x, y, z \rangle$ through *D*. Hint: The surface area of a sphere of radius *R* is $4\pi R^2$.

Problem 2. The curve $(2 + \cos u, \sin u)$, $0 \le u \le 2\pi$ in the *xy*-plane is rotated around the *y*-axis. Parametrize the resulting surface, and describe it.

Problem 3. Compute the flux of the vector field $(0, 0, 4-z^2)$ outwards through the closed cylinder with lateral side $x^2 + y^2 = 10$ and lids z = 0 and z = 2. Note that this surface has three parts.

Problem 4. Compute the divergence of the vector field in Problem 1. Integrate it over the 3d interior of the sphere: $x^2 + y^2 + z^2 \le$ 9. What do you get?

Compute the divergence of the vector field in Problem 3. Integrate it over the 3d interior of the cylinder. What do you get?